Received: 20th January 2016 Accepted: 03rd April 2016 Conflict of Interest: None

Source of Support: Nil

Case Report

Doi: 10.2047/jioh-08-06-20

Considerations in Detecting Soft Tissue Calcifications on Panoramic Radiography

Ibrahim Nasseh¹, Sayde Sokhn², Marcel Noujeim³, Georges Aoun⁴

Contributors:

¹Professor, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Lebanese University, Beirut, Lebanon; ²Clinical Instructor, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Lebanese University, Beirut, Lebanon; ³Associate Professor, Department of Oral and Maxillofacial Radiology, University of Texas Health Science Center San Antonio, Texas, USA; ⁴Assistant Professor, Department of Oral Pathology and Diagnosis, Faculty of Dentistry, Lebanese University, Beirut, Lebanon

Correspondence:

Dr. Aoun G. Department of Oral Pathology and Diagnosis, Faculty of Dentistry, Lebanese University, Beirut, Lebanon. Email: aoungeorges@yahoo.com

How to cite the article:

Nasseh I, Sokhn S, Noujeim M, Aoun G. Considerations in detecting soft tissue calcifications on panoramic radiography. J Int Oral Health 2016;8(6):742-746.

Abstract:

Head and neck soft tissues calcifications can result from physiological or pathological mineralization. Some of these calcifications may be found on panoramic radiography because of their proximity to the focal trough and their superimposition over hard and soft tissue structures. Such radiographic images are common and create a diagnostic challenge. Differentiation of these entities can be done when radiographic features and locations are taken into consideration. Since cone-beam computed tomography (CBCT) has been used in dentistry, fortuitous discovery of such calcifications has increased. However, by providing images in the third dimension, CBCT facilitates their precise localization. Adequate diagnosis of these calcifications may enhance their approach and management by clinicians. The aim of this article is to describe the radiographic characteristics of some head and neck calcifications in dental practice on panoramic X-rays and CBCT.

Key Words: Calcification, cone-beam computed tomography, head and neck, panoramic radiography

Introduction

Calcifications of various structures located in the head and neck regions are commonly found in patients seeking dental care. These calcifications may be fortuitously detected on conventional imaging techniques used in dental practice such as panoramic radiography. However, many of them look alike which make localization and identification difficult.¹

These are deposits of calcium salts, mostly calcium phosphate in the soft tissues.² In the head and neck, they can be present as physiologic or pathologic mineralization.¹ The latest, usually associated with chronic inflammation or scars, is more likely

to be found in ligaments, articulation's cartilage, glands, and vessel tissues. 1,3

There are three types of pathologic calcifications: 1-3

- 1. Dystrophic calcification, generally occurring in degenerating and necrotic tissues
- 2. Metastatic calcification, in which calcium and other salts are deposited in previously undamaged tissue as a result of excess salts in the circulating blood
- 3. Calcinosis, which is a calcification commonly located in subcutaneous tissues.

Anatomical location, distribution, number, size, and shape are among the most important diagnostic features of these calcifications.³

The aim of this report is to describe radiographic findings of some cases of soft tissue calcifications superimposed over the ramus and the angular region of the mandible and to help the clinician establishing appropriate diagnosis and management.

Case Reports

Case 1

The panoramic image of a 21-year-old male patient revealed multiple irregulars in shape collection of small, punctuate radiopaque entities, posterior to the inferior third of the right ramus and angle of the mandible, projecting the image of the body of C3 (Figure 1a).

Further investigation revealed a history of severe viral parotitis (mumps) that occurred at a young age and lasted more than 3 months with residual swelling described then by the physician as a lymph node reaction which would take a long time to disappear without any major concerns.

The long-standing inflammation of the parotid gland can disturb the excretory system of the affected parts of the gland causing the salivary flow to slow down and even completely discontinue. Stagnant saliva and post inflammatory small fibrotic areas contribute to stasis, making the salivary system more prone to the development of sialoliths.⁴

Cone-beam computed tomography (CBCT) was requested to determine the relationship of the mandibular canal with the wisdom teeth. The calcifications were then evaluated: they appeared to be situated at mid-distance between the lateral aspect of the neck and the right lateral aspect of the airway (Figure 1b).

Adding medical history to the radiographic findings might also suggest the diagnosis of calcification of one or multiple lymph nodes, normally embedded within the parotid gland.

Case 2

The panoramic image of a 60-year-old male patient consulting for replacing multiple maxillary, and mandibular absent teeth showed a round radiopaque structure projecting the image of the right mandibular ramus, 2-3 mm inferior to the mandibular foramen. Few smaller radiopacities were noted slightly inferior and posterior. The patient was asymptomatic (Figure 2a).

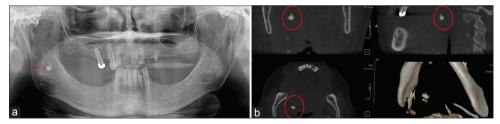
CBCT showed a 5 mm \times 7 mm high-density structure within the parapharyngeal soft tissues on the right side with multiple, smaller, punctuate calcifications inferior to the larger one. The calcifications are within the palatine tonsils region, evoking the diagnosis of tonsilloliths. This is a rare case of such big calcification inside the tonsils (Figure 2b).

Case 3

An 82-year-old female patient presented for extraction of remaining maxillary roots. The medical history revealed only a recurrent tonsil inflammation.

The panoramic radiograph showed multiple small radiopacities, bilaterally projecting over, and spreading along, the whole surface of the inferior two-thirds of the mandibular ramus (Figure 3a).

Before pre-prosthetic surgery, CBCT was requested, and it was beneficial to exactly locate these high densities (Figure 3b).


The anatomical location, distribution, number, size, and shape of theses calcifications are pathognomonic of tonsillitis as they commonly appear on panoramic.

Case 4

This case exhibits on the panoramic a smooth, single, well-demarcated, kidney-shaped structure presenting with multiple alternated layers of high density and relatively lower density bands; these features are suggestive of a long-standing, over-

Figure 1: (a) Panoramic radiograph showing well-limited multiple radiopacities. (b) Axial and sagittal cuts showing hyperdense image within the codal part of the parotid gland.

Figure 2: (a) Panoramic radiograph showing a round radiopaque structure projected over the right mandibular ramus. (b) Conebeam computed tomography showing a high-density structure within the parapharyngeal soft tissues on the right side with multiple, smaller, punctuate calcifications inferior to the larger one.

Figure 3: (a) Panoramic radiograph showing multiple small radiopacities, projected bilaterally over the whole surface of the inferior two-thirds of the mandibular ramus. (b) Cone-beam computed tomography imaging showing multiple clustered "rice grain" like ovoid high densities, immediately superficial to the lateral oropharyngeal airway space.

time building salivary gland calculus situated within the hilum of the gland (Figure 4).

Case 5

This case shows a radiopacity with similar size and shape than the former case; however, the outline is ragged and irregular with a cauliflower appearance. Multiple, smaller in size opacities are noted in a chain pattern extending 2-3 cm inferiorly (Figure 5).

These features are more consistent with calcified lymph nodes usually seen as a long-term secondary reaction to a chronic inflammatory process in the neighboring area.

Case 6

This is an asymptomatic patient who presented for prosthetic needs (complete denture); the routine panoramic image revealed the typical presentation of calcification of the stylohyoid ligament as a linear high-density area extending from the sphenoid bone to the lesser horn of the hyoid bone (Figure 6).

Case 7

This patient presented for routine dental treatment; his panoramic image showed the presence of multiple asymptomatic small, irregular in shape and size, radiopaque areas inferior to the angle of the mandible at the level of C3-C4 (Figure 7).

Figure 4: Panoramic showing smooth, single radiopacity, well-demarcated, kidney-shaped structure presenting with multiple alternated layers of high density and relatively lower density bands.

Figure 5: Panoramic showing a ragged outline radiopacity with a cauliflower appearance.

The density is present at the chain-like structures extending in a vertical direction with 2-3 cm length. They are <1 cm wide in the anteroposterior direction. The radiopacities are not homogeneous; they can present with multiple degrees of density/calcification.

These are typical features of carotid artery calcification (CAC).

Discussion

Head and neck soft tissue calcifications are relatively common. They are usually incidentally detected on routine radiographic examination. Calcifications' form, quantity, distribution, and localization are key diagnosis factors to be considered.³

When superimposed over the bone, determination of whether the calcification is located in either the bone or the soft tissue is a complex task. Among the lesions to be considered for the differential diagnosis are the carotid artery, lymph nodes, salivary gland, oropharyngeal tissues, and stylohyoid ligament calcifications. And the carotid artery is a superior calcification of whether the bone or the soft tissue is a complex task.

According to many authors, sialoliths are described as an aggregation of calcareous structures in the salivary glands and their ducts. It is also referred to as a salivary stone or salivary gland calculus. It is one of the most frequent disorders of salivary glands, second to viral parotitis. Males are affected twice as often as females; however, some authors found no race or sex predilection.^{7,8}

Figure 6: Panoramic image showing a linear radiopaque structure extending from the sphenoid bone to the lesser horn of the hyoid bone (calcification of the stylohyoid ligament).

Figure 7: Panoramic image showing the presence of multiple small radiopaque areas inferior to the angle of the mandible at the level of C3-C4 in a vertical direction.

About 80 to 90% of sialoliths occur in the submandibular gland, 10-20% in the parotid, only 1-7% in the sublingual, and rarely in minor salivary glands. This is explained by the thickness, more mucous nature of submandibular gland secretions. 9

Besides the high frequency of sialoliths in the submandibular gland, giant ones were described like the 35 mm length sialolith reported by Arslan $\it et al.^9$

Two different radiographic aspects of tonsilloliths are presented in cases 2 and 3.

Tonsilloliths are a common cause of calcification in the pharynx, but there is a general lack of awareness of this entity among clinicians and radiologists.¹⁰

They are multiple small opaque masses situated within the thickness of the tonsils and other parapharyngeal soft tissues. Due to the angulation of X-ray projection of the panoramic, their image superimposes at the level of the mid-height of the ramus. ^{11,12}

In case 3, the panoramic image shows several small opaque structures superimposed on the anterior border of the airway space that may occasionally extend over the ramus. CBCT image illustrates multiple congregated "rice grain" like ovoid homogeneous dense opacities superficially to the oropharyngeal airway space. 5,6,13,14

These calcified structures that form in the tonsillar crypts are fortuitously discovered on radiograph of up to 16% patients. ¹³ They may grow or regroup to reach a larger size. In generally, the patients do not present clinical signs; however, they might at some instances complain from chronic irritation of the throat, bad taste and odor, or otalgia. ¹³

At the neck, lymph nodes are located in the cervical, submandibular, submental, and preauricular regions. Most patients with such calcifications are asymptomatic, with regional chronic inflammation histories such as sinusitis and tonsillitis.

Radiographically, these calcifications are usually distinct, irregularly shaped opacities typically described as "cauliflower-like." Since cervical lymph nodes are arranged both superficial and deep to the neck, differentiation is often based on radiographic aspect.^{4,7,8,15,16}

They are mostly located in the submandibular region, adjacent to the mandibular angle.

The calcified styloid chain (CSC) is an excessive or abnormal calcification component including elongation of the styloid process and calcification of the stylohyoid ligament. The

average normal length in adult ranges between 20 to 30 mm and higher measurement is considered as an elongation. ¹⁷

It was first described by Marchetti Pietro (1652)¹⁸ and took the name of Dr. Watt Eagle (1937) to become known as Eagle's syndrome.¹⁹

Although asymptomatic, 1-10% patients with CSC may present clinical signs resulting from the compression of the elongated calcified stylohyoid ligament on the anatomic structures of the region. Among these symptoms, a foreign body sensation during swallowing referred otalgia and dysphagia. ¹⁸

In a typical panoramic radiography, the stylohyoid ligament ossification initiates at the mastoid process and traverses the ramus from its postero-inferior aspect toward the hyoid bone.⁶ Kusunoki *et al.* reported a case of elongated styloid reaching 8 cm in length.²⁰

The prevalence of CAC found on panoramic images during dental routine examination varies between 0.1 to 3.2% in patients older than 50 years and increases to 22-37% in populations having diseases at high atherosclerotic risk such as hypertension, cardiovascular disease, diabetes, hypercholesterolemia, obesity and physical inactivity, and tobacco consumers.¹²

In addition to the carotid arteries (common, internal, and external), the vertebral and/or lingual arteries may be affected.²¹

Regions of large shear forces such as the carotid bifurcation located laterally and inferiorly with respect the hyoid bone are the most affected by CAC.¹

The probable morbidity and mortality induced by the CAC, requires, if suspected, immediate patient referral to a specialist physician to confirm the potential stenosis of the artery's lumen and its degree, the latter being closely associated to stroke risks.²¹

CACs are developed at the soft tissue beneath the mandible angle. On panoramic radiograph, they are located between the hyoid bone and the cervical spine.²²

Yeluri *et al.* found a relationship between pulp stones and CAC and stated that an advanced evaluation of CAC must be done when multiple pulp stones were detected.²³

Conclusion

Multiple calcifications can be noted in the head and neck area. They present many features that complicate their differentiation for a non-experienced observer. However, a close examination reveals that each one of them has an appearance typical enough to make a confident diagnosis as such.

References

- 1. Wells AB. Incidence of soft tissue calcifications of the head and neck region on maxillofacial cone beam computed tomography. Electronic Theses and Dissertations; 2011. Paper. 1545. Available from: http://dx.doi.org/10.18297/etd/1545.
- 2. Çaglayan F, Sümbüllü MA, Miloglu Ö, Akgül HM. Are all soft tissue calcifications detected by cone-beam computed tomography in the submandibular region sialoliths? J Oral Maxillofac Surg 2014;72(8):1531.e1-6.
- 3. Garay I, Netto HD, Olate S. Soft tissue calcified in mandibular angle area observed by means of panoramic radiography. Int J Clin Exp Med 2014;7(1):51-6. eCollection 2014.
- 4. Keberle M, Robinson S. Physiologic and pathologic calcifications and ossifications in the face and neck. Eur Radiol 2007;17(8):2103-11.
- Babu BB, Tejasvi MLA, Avinash CK, Tonsillolith BC. A panoramic radiograph presentation. J Clin Diagn Res 2013;7(10):2378-9.
- 6. de Moura MD, Madureira DF, Noman-Ferreira LC, Abdo EN, de Aguiar EG, Freire AR. Tonsillolith: A report of three clinical cases. Med Oral Patol Oral Cir Bucal 2007;12(2):E130-3.
- 7. Okano T. Lesions originating in the head and neck spaces and their differentiation: An introduction. Oral Radiol 2003;19(2):104-5.
- 8. Khan Z, Wells A, Scarfe W, Farman A. Cone Beam CT isolation of calcifications in the maxillofacial and cervical soft tissues: A retrospective analysis. Int J Comput Assist Radiol Surg 2008;3 Suppl 1:S221-2.
- 9. Arslan S, Vuralkan E, Çobanog?lu B, Arslan A, Ural A. Giant sialolith of submandibular gland: Report of a case+. J Surg Case Rep 2015;2015(4). pii: rjv043.
- 10. Thomas DP. Tonsilloliths A common cause of pharyngeal calcification. Australas Radiol 1974;18(3):287-91.
- 11. Bamgbose BO, Ruprecht A, Hellstein J, Timmons S, Qian F. The prevalence of tonsilloliths and other soft tissue calcifications in patients attending oral and maxillofacial radiology clinic of the University of Iowa. ISRN Dent 2014;2014:839635.

- 12. Scarfe WC, Farman AG. Soft Tissue Calcifications the Neck: Maxillofacial CBCT Presentation and significance AADRT Newsletter; 2010. p. 1-25.
- 13. Yousef HO, Yousef HA, Omar MK, Ahmed MK, Farghaly TM. Tonsillar calcification, computed tomography and clinical findings, a case study. Med J Cairo Univ 2012;80(1):427-34.
- 14. Mesolella M, Cimmino M, Di Martino M, Criscuoli G, Albanese L, Galli V Tonsillolith. Case report and review of the literature. Acta Otorhinolaryngol Ital 2004;24(5):302-7.
- Takahashi A, Sugawara C, Kudoh T, Uchida D, Tamatani T, Nagai H, et al. Prevalence and imaging characteristics of palatine tonsilloliths detected by CT in 2,873 consecutive patients. ScientificWorldJournal 2014;2014:940960.
- 16. Wu G, Sun X, Ni S, Zhang Z. Typical nodal calcifications in the maxillofacial region: A case report. Int J Clin Exp Med 2014;7(9):3106-9. eCollection 2014.
- 17. Fusco DJ, Asteraki S, Spetzler RF. Eagle's syndrome: Embryology, anatomy, and clinical management. Acta Neurochir (Wien) 2012;154(7):1119-26.
- 18. Moon CS, Lee BS, Kwon YD, Choi BJ, Lee JW, Lee HW, *et al.* Eagle's syndrome: A case report. J Korean Assoc Oral Maxillofac Surg 2014;40(1):43-7.
- 19. Eagle WW. Elongated styloid processes: Report of two cases. Arch Otolaryngol 1937;25(3):584-7.
- 20. Kusunoki T, Homma H, Kidokoro Y, Yanai A, Fujimaki M, Ikeda K. A case of a very elongated styloid process 8 cm in length with frequent throat pain for 10 years. Clin Pract 2016;6(1):820.
- 21. Alves N, Deana NF, Garay I. Detection of common carotid artery calcifications on panoramic radiographs: Prevalence and reliability. Int J Clin Exp Med 2014;7(8):1931-9.
- 22. Misirlioglu M, Nalcaci R, Adisen MZ, Yardimci S. Bilateral and pseudobilateral tonsilloliths: Three dimensional imaging with cone-beam computed tomography. Imaging Sci Dent 2013;43(3):163-9.
- 23. Yeluri G, Kumar CA, Raghav N. Correlation of dental pulp stones, carotid artery and renal calcifications using digital panoramic radiography and ultrasonography. Contemp Clin Dent 2015;6 Suppl 1:S147-51.