Antimicrobial Effectiveness of Herbal and 0.2% Chlorhexidine Mouthrinse against
Streptococcus mutans: An In-vitro Study
Nagappan Nagappan1, Joseph John2, Nithin Manchery Gopinath3, Senthil Kumar Elango4,
Dinesh Dhamodhar Mathevan Pillai5, Muralimani Mani5

Contributors:
1Senior Lecturer, Department of Public Health Dentistry, Chettinad Dental College & Research Institute, Chennai, Tamil Nadu, India; 2Professor and Head, Department of Public Health Dentistry, Saveetha Dental College & Hospital, Chennai, Tamil Nadu, India; 3Senior Lecturer, Department of Public Health Dentistry, Madha Dental College & Hospital, Chennai, Tamil Nadu, India; 4Lecturer, Department of Public Health Dentistry, Penang International Dental College, Butterworth, Penang, Malaysia; 5Reader, Department of Oral & Maxillofacial Surgery, Sri Venkateswara Dental College & Hospital, Chennai, Tamil Nadu, India.

Correspondence:
Dr. Nagappan N. Department of Public Health Dentistry, Chettinad Dental College & Research Institute, Rajiv Gandhi Salai, Kelambakkam, Chennai - 603 103, Tamil Nadu, India. Phone: 91-9840579699. Email: nagappan.dent@gmail.com

How to cite the article:

Abstract:
Background: Microorganisms in the oral cavity are still considered as serious public health problems and inflict a costly burden to health care services in and around the world. Mouthrinses have been used for centuries with the objective of reducing the amount of microorganisms in the oral cavity. Mouthrinses are used as adjuncts to mechanical oral hygiene. Therapeutic mouthwashes are often recommended as an adjunct to mechanical plaque control for prevention of plaque accumulation and to maintain gingival and periodontal health. Mechanical control alone for reducing recalcitrant biofilms in the oral cavity has been challenged because it is considered to be rather time-consuming and most importantly insufficient for effective oral hygiene. The aim of this study was to evaluate the antimicrobial efficacy of herbal and 0.2% chlorhexidine gluconate mouthrinse against Streptococcus mutans.

Materials and Methods: The antimicrobial effectiveness (zone of inhibition) of an herbal mouthrinse and 0.2% chlorhexidine mouthrinse was determined by agar well diffusion method.

Results: The zone of inhibition of S. mutans was 19 mm for the 0.2% chlorhexidine mouthrinse. The arowash liquid mouthrinse shows that S. mutans do not produce a zone of inhibition.

Conclusion: Chlorhexidine mouthrinse (0.2%) has a better antimicrobial efficacy against the S. mutans when compared to herbal mouthrinse (arowash liquid).

Key Words: Antimicrobial effectiveness, chlorhexidine, herbal, Streptococcus mutans

Introduction
Dental caries, gingival disease,1 and periodontal disease are the most frequently occurring oral diseases in the world. The use of tooth brushing and fluoride toothpaste appeared to be almost universal.2 There is difficulty in effectively removing plaque by only using toothbrushing and flossing, as these measures do not remove plaque completely.3

Many studies have shown that dental floss is superior in removing interproximal plaque compared to others, and it also reduces the incidence of proximal caries.4 Therefore, an easy applicable alternative is needed.

The incorporation of broad spectrum antimicrobial mouthrinses as adjuncts to patient’s daily oral hygiene regimen has assumed greater importance with the recognition that most individuals are unable to consistently maintain adequate levels of plaque control using mechanical methods alone.1

There is a necessity for adjuncts, in addition to mechanical aids for maximum plaque control. A variety of subsequent studies have demonstrated the antiplaque and anti-gingivitis effectiveness of chlorhexidine mouthrinses as adjuncts to usual oral hygiene methods. As a result, 0.2% chlorhexidine mouthrinses became widely used in many European countries.1 Till present, chlorhexidine mouthwash is considered as gold standard for the best plaque control agent.5

Currently, there are commercialized oral rinses, which contain natural compounds with antimicrobial activity and are known to be safe for human use. However, there is inadequate clinical research on herb based mouthrinses and dentifrices in Asia.6 Till present, there are many conditions affecting the oral health which can be prevented and/or using natural product-based drugs or formulations.7 Natural extracts such as Eucalyptus globules (Eucalyptus), Eugenia caryophyllus (Clove), Sanguinaria canadensis (Sanguinarine), Cinnamomum verum (Cinnamon), and Mentha spicata (Spearmint) are among the extracts added to the formation...
of many commercialized mouthrinses antimicrobial agents due to the broad range effects towards oral microbes and pathogens.8

Neem, garlic, and green tea extracts were also tested for its efficacy.9 Pomegranate fruit also has antibacterial and anticas properties comparable to 0.2% chlorhexidine mouthwash.10 Lemongrass oil has also been considered as an alternative to 0.2% chlorhexidine mouthwash because of its antibacterial, antioxidant, antifungal, and anti-inflammatory properties.11 Rosemary \((\text{Rosmarinus officinalis})\) extract has been proven to improve healing of mouth ulcers and bleeding gums.3 Arowash liquid is a judicious combination of three herbs: \(\text{Acacia catechu}\) extract, \(\text{Glycyrrhiza glabra}\) extract, and \(\text{Syzigium aromaticum}\) extract, which are responsible for antiseptic, anti-inflammatory, astringent, local anesthetic, and mouth freshener effect.

To the best of our knowledge, no past researches have been conducted on these combinations of herbs against the \(\text{Streptococcus mutans}\). Hence, the aim of this study was to evaluate the antimicrobial efficacy of herbal and 0.2% chlorhexidine gluconate mouthrinse against \(\text{S. mutans}\).

Materials and Methods

Study design
An \textit{in vitro} experimental study on microbiological analysis of herbal mouthrinse and 0.2% chlorhexidine gluconate mouthrinse against \(\text{S. mutans}\).

Test materials
- Control mouthrinse: Hexidine mouthrinse (ICPA Health Products Ltd.)
- Experimental mouthrinse: Arowash liquid mouthrinse (Cadila Pharmaceuticals Ltd.).

Test organism
\(\text{S. mutans}\) (ATCC 25175).

Review board clearance
Before the commencement, the study was submitted for approval and clearance was obtained from Scientific Review Board, Saveetha University, Chennai.

Approval from authorities
The study was carried out in the Department of Microbiology, Sri Muthukumaran Medical College and Hospital, Chennai. Permission to conduct the study was obtained from the Dean and Head of the Department (Microbiology) of the college.

Scheduling
The study was scheduled for a period of 1-month from 1st May 2013 to 31st May 2013.

Procedure for antimicrobial activity by zone of inhibition (agar well diffusion method)12
For each test organism, 0.5 McFarland turbidity adjusted inoculum was prepared in brain heart infusion broth.

Using a sterile cotton swab, a lawn inoculum was made in the blood agar for \(\text{S. mutans}\), in the Mueller-Hinton agar for \(\text{Staphylococcus aureus}\) and \(\text{Enterococcus faecalis}\), and in sabouraud dextrose agar for \(\text{Candida albicans}\) strains, respectively.

With the help of the sterile Pasteur pipette (blunt end), 2 wells measuring 8 mm in diameter were made in the media (one in each half) and 80 µl of undiluted control and test solutions were dispensed in each well.

Petri dishes were incubated upright at 37°C for 24 h to grow the microorganisms.

Diameter of zones of inhibition of both the test solution as well as the control solution was measured in mm.

Results
Table 1 describes the zone of inhibition for control and experimental mouthrinse against \(\text{S. mutans}\). The zone of inhibition for control mouthrinse was 19 mm, and there was no zone of inhibition observed for the experimental mouthrinse.

Discussion
The oral cavity represents a dynamic ecosystem; therefore, it would not be totally advantageous to eliminate all elements of the oral microflora in an effort to control dental plaque-associated infections. Rather, it may be more ideal to remove only most cariogenic and periodontopathic elements of the dental plaque microflora while permitting the most innocuous elements to remain.13

The classical experiments of Loe \textit{et al.} (1965) demonstrated that the accumulation of microbial plaque for 3 weeks predictably resulted in the development of generalized gingivitis. Likewise, plaque removal reversed clinical inflammation to the healthy gingiva. A large number of studies have confirmed these findings both in humans and in experimental animals.14

<table>
<thead>
<tr>
<th>Mouthrinse</th>
<th>\textit{Streptococcus mutans}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control mouthrinse</td>
<td>19 mm</td>
</tr>
<tr>
<td>Experimental mouthrinse</td>
<td>00 mm</td>
</tr>
<tr>
<td>(\text{S. mutans: Streptococcus mutans})</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Zone of inhibition for control and experimental mouthrinse against \(\text{S. mutans}\).
Studies among various populations in developing countries demonstrated that dental caries, gingivitis, and periodontitis are a common feature among adults. The data from the National Health Survey conducted by the United States (1969) showed that the prevalence of gingivitis for adolescents 12-17 years of age is 62%.15

In the third National Health and Nutrition Examination Survey (NHANES III, 1988-1994) of the United States Public Health Service, 50% of adults were identified as having gingivitis.16 Gingival bleeding was more prevalent (63%) in the 13-17 years old group and declined (48%) gradually through the 35-44 years old age group. The prevalence increased (53%) again at 45-54 years old age group but remained fairly constant (53%) in older age groups. A study of the US school children aged 14-17 years reported that the prevalence of gingival bleeding was 61.5%, which is identical to the prevalence reported in NHANES III.17

Various devices have been used over the years to assist in the removal of plaque from the tooth surfaces and interproximal sites, as it has been demonstrated that tooth brushing alone does not adequately remove interproximal plaque and thereby control gingivitis.18 The routine practice of twice daily brushing and once daily interdental cleaning has been the mainstay of oral hygiene recommendations by dental professionals to their patients for decades.18 Of these devices, the daily use of mouth rinse and dental floss has received the most attention as an effective method of interproximal cleaning.

A relatively large number of chemical agents, which are mostly synthetic compounds, have been used for many purposes, control of dental plaque, elimination of oral pathogens, against malodor, etc.19

Arowash liquid is a judicious combination of three ayurvedic herbs such as A. catechu, G. glabra, and S. aromaticum. A. catechu extract contains Tannins, which have astringent and antioxidant effects, thereby protecting the mucosal layers. G. glabra extract, containing Glycyrrhizin, is a reputed drug for gastric and duodenal ulcers and possess soothing properties. Glycyrrhizin has also been reported to have anti-inflammatory action. Clove oil is a reputed antiseptic, antibacterial, antifungal, antiviral and a local anesthetic. It is an invaluable remedy in inflammation of the mouth and pharynx and as a local analgesic and dental antiseptic.

The present in vitro study was conducted to estimate the minimum inhibitory concentration of an herbal mouth rinse and to compare its antimicrobial efficacy with a commercially available mouthrinse (0.2% chlorhexidine gluconate) against 4 oral bacterial strains. The mouthrinses used in the present study were experimental mouthrinse (arowash liquid) and control mouthrinse (hexidine [0.2% chlorhexidine mouthrinse]).

The strain used in the present study was internationally accepted S. mutans (ATCC 25175). The study was conducted in the Department of Microbiology, Sri Muthukumaran Medical College, for a period of 1-month. To determine the antimicrobial activity (zone of inhibition) for mouthrinses agar well diffusion method was used.

In the current study, the zone of inhibition for control mouthrinse (hexidine) for S. mutans was found to be 19 mm, which was lower than the study conducted by Sedighinia et al. The reason for this difference in values is because of variation in product formulation.

In the current study, the experimental mouthrinse does not inhibit the zones in S. mutans, whereas in the study conducted by Geetha et al. reported that the zone of inhibition of A. catechu extract for S. mutans was found to be 10 mm and Dhanyakumar et al. reported that the zone of inhibition of G. glabra for S. mutans was found to be 16.8 mm. Again the difference could be attributed to the difference in product formulation, thus concluding that a combination is better when compared to a single ingredient (Figure 1).

Conclusion
The result from this study claims that chlorhexidine gluconate mouthrinse (0.2%) has a better antimicrobial efficacy against the S. mutans when compared to herbal mouthrinse (arowash liquid). Further, studies are required to better evaluate of this extract as a root canal irrigants. In vivo clinical testing essential to confirm in vitro study results to be done in larger sample size.

References